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ABSTRACT

Sound Event Detection and Audio Classification tasks are tradition-
ally addressed through time-frequency representations of audio sig-
nals such as spectrograms. However, the emergence of deep neural
networks as efficient feature extractors has enabled the direct use of
the audio signals for classification purposes. In this paper, we at-
tempt to recognize musical instruments in polyphonic audio by only
feeding their raw waveforms into deep learning models. Various re-
current and convolutional architectures incorporating residual con-
nections are examined and parameterized in order to build end-to-
end classifiers with low computational cost and only minimal prepro-
cessing. We obtain competitive classification scores in the IRMAS
test set, utilizing a parallel CNN-BiGRU model with multiple resid-
ual connections, while maintaining a significantly reduced number
of trainable parameters.

Index Terms— Raw Waveforms, End-to-End Learning, Poly-
phonic Music, Instrument Classification

1. INTRODUCTION

Waveforms are abstract representations of sound waves and, when
recorded, they constitute convoluted signals that incorporate noise
from the complexity of the recorded sound event, the acoustic scene,
as well as the recording equipment. Complex sound events such
as spoken dialogues or simultaneously playing musical instruments
(i.e., polyphonic music) can be challenging in extracting meaning-
ful information. Thus, audio classification tasks traditionally discard
waveform modeling in favor of richer time-frequency feature rep-
resentations [1]. In fields like Speech Recognition [2] and Music
Information Retrieval [3], such methods take advantage of the dis-
criminative information of the signals’ spectra, which is aligned to
the human auditory system.

In Instrument Classification particularly there is strong intuition
into utilizing frequency-related representations as musical notes and
instruments are densely associated with specific frequency events.
Thus, the majority of research works in the field incorporate spec-
trograms in their analysis. It is however challenging and computa-
tionally expensive to design specialized feature representations for
each different recognition task, especially when contemporary deep
learning models emerge as strong feature extractors for end-to-end
classification. In this paper we address this challenge by parameter-
izing deep recurrent and convolutional networks to model raw audio
waveforms efficiently. Our analysis is concentrated on handling the
high input dimensionality of the waveforms, mining temporal fea-
tures and preserving their low-level spatial locality, and reducing
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Fig. 1. Intermediate activation of the Residual FCN Model (Sec. 3.2)
for the above 1-sec piano sample.

the computational cost of the whole process. In the end, we pro-
pose a lightweight end-to-end classifier for Instrument Classification
that shows comparable performance to state-of-the-art spectrogram-
based architectures, including our previous work on the task [4].

The rest of the paper is organized as follows: Sec. 2 provides
a review of related research work in Audio Signal Processing using
raw waveforms, as well as Instrument Classification. The architec-
tures that are used throughout our experiments are analyzed in Sec. 3.
Sec. 4 describes the experimental setup, the dataset and the evalua-
tion methods to be followed, whereas in Sec. 5 we discuss the results
of our experiments. Finally, in Sec. 6 we present our conclusions as
well as propose further directions for future work.

2. RELATED WORK

Deep neural networks, which have achieved state-of-the-art per-
formances in audio recognition [5] by operating directly in the
time domain, have blurred the line between representation learn-
ing and predictive modeling. Convolutional networks particularly
have shown competitive performance, in some cases matching that
of classical spectrogram-based models [6]. In speech analysis
and synthesis, WaveNet [7] is a benchmark model fed with audio



Fig. 2. The DCNN, FCN and RFCN architectures used in the experimental evaluation.

waveforms, whereas [8] achieves robust representation learning by
utilizing WaveNet Autoencoders that use waveforms directly as
input. In Music Information Retrieval, a number of works have
attempted to acquire high-level features like melody and pitch [9],
while waveform-based architectures have also recorded competitive
results in music [10] and speech [11] source separation.

As far as Instrument Classification is concerned, until recently
the majority of works utilized time-frequency representations and
used datasets of solo recordings or excerpt-level annotations (e.g.
IRMAS [12], MedleyDB [13]), due to the challenging task of label-
ing polyphonic music. While traditionally research focused upon
monophonic audio [14], most recent studies address polyphonic
tasks, relying on the efficiency of deep learning models. Specific
points of focus include investigation of the optimal input temporal
resolution [15, 16], the design of the convolutional filters involved
[17], while we have also experimented with sophisticated augmen-
tation methods, attempting to isolate timbre-like characteristics [4].

3. ARCHITECTURES

3.1. Recurrent Networks

Recurrent neural networks (RNN) have been widely used in wave-
form modeling and classification, thanks to their ability to model
long-range temporal dependencies. Thus, in our baseline network
we employ the Bidirectional Gated Recurrent Unit (BiGRU). The
GRU architectures have shown comparable performance to Long
Short-Term Memory (LSTM) units in processing audio sequences
[18], while they also inherit a less complex structure that results in
lower computational cost. Moreover, the Bidirectional version of the
GRU takes into account both past and future audio context, which
intuitively assists our task.

Number of Layers Number of Units
1 128 or 256
2 128, 64

Dropout (0.5)
Output Dense

Table 1. BiGRU Architecture Configurations.

We have been experimented with the optimal number of layers
in the recurrent network. Specifically, we have trained 3 different
networks one with 1 Bidirectional GRU layer with 128 number of
units, one with 1 Bidirectional GRU layer with 256 number of units

Fig. 3. The utilized CNN cell structure.

and one with 2 Bidirectional GRU layers with 128 and 64 number of
units respectively, as shown in Table 1. We used a fully connected
layer to produce the models’ output as well as a Dropout layer right
before, to enhance the generalization capabilities. To reduce the high
dimensionality of the waveforms we apply max pooling at the input
level, with a pool size of 3.

3.2. Convolutional Networks

Convolution has been an extremely coherent feature extraction pro-
cess and has been applied to nearly every Deep Learning task. Con-
volutional Networks (CNN) traditionally operate on images [19] or,
in Audio Classification, on time-frequency representations like spec-
trograms [15]. However, convolution provides useful results also
when applied to 1D signals [20]. We base our CNN on the architec-
ture used in [4] that yielded strong results on the IRMAS Dataset.
We substitute 2D with 1D Convolution layers and fine-tune the pa-
rameters so as to handle the high dimensionality of audio waveforms.
The convolution cell structure is composed of 2 stacked convolu-
tional layers with the same number of filters, a Batch Normalization
layer that enhances the training efficiency [21], a Leaky ReLU acti-
vation and a max pooling layer (Fig. 3).

We place 5 CNN cells in a row with 16, 32, 64, 64 and 32 fil-
ters respectively, using kernel and pooling sizes equal to 3 for the
first three layers and 5 for the rest. This model is followed by two
fully connected layers (denoted as DCNN), increasing substantially
the number of its trainable parameters. Thus, we also experiment
by removing all the fully connected layers to form a Fully Convo-
lutional Network (FCN). The 11D output vector is then estimated
through an additional convolution layer with a unit kernel, followed



BiGRU F1-micro % F1-macro % LRAP % #Params
1 (128) 43.76 ± 1.95 37.37 ± 1.90 57.26 ± 3.28 103.4K
1 (256) 43.51 ± 2.46 39.19 ± 2.23 58.47 ± 2.73 403.4K

2 49.28 ± 2.45 43.18 ± 3.11 67.07 ± 1.81 225.6K

Table 2. Results for the Recurrent Networks discussed in Sec. 3.1,
subject to the number of GRU layers and the number of units.

Models F1-micro % F1-macro % LRAP % #Params
DCNN 55.32 ± 0.55 48.30 ± 0.31 73.48 ± 0.38 1.14M
FCN 58.45 ± 0.36 49.96 ± 0.29 75.13 ± 0.32 81.8K

RFCN 58.55 ± 0.22 50.22 ± 0.35 75.14 ± 0.23 85K

Table 3. Results for the Dense Connected Neural Network (DCNN),
the Fully Connected Network (FCN) and the Residual FCN (RFCN)
discussed in Sec. 3.2.

by Global Average Pooling. The adoption of FCNs in modeling raw
audio waveforms sharply reduces the number of parameters that we
need to train, while it could also force the network to learn mean-
ingful features in its convolutional layers, keeping their spatial lo-
cality throughout the model workflow [20]. The final configuration
is a Residual FCN (RFCN), where we simply embed to the previous
model the skip connections shown in Fig. 2. Through residual con-
nections the model is able to propagate low-level features throughout
the network.

3.3. Combined Networks

The aforementioned feature extraction and classification methods
are capable of learning different types of features. It has been
demonstrated [5] that convolutional networks concentrate on spatial
features and, in the context of waveforms, on temporally local cor-
relations, while recurrent ones are useful in modeling longer-term
temporal structure and variance. We can therefore expect that a
combined Convolutional-Recurrent Neural Network model (CRNN)
would further enhance the performance of the highlighted architec-
tures, so we proceed to attach the best BiGRU model into the RFCN
model. In order to preserve the temporal resolution of the RNN to
feasible magnitude, we experiment by embedding it after the 2nd,
the 3rd and the 4th CNN cell, as well as by feeding the CNN output
to the recurrent units. Specifically, the embedded model takes the
output of the corresponding CNN cell and its output is reduced to
the number of classes through an additional convolution layer with a
unit kernel, followed by Global Average Pooling, just as applied to
the FCN models. The two 11D vectors are then averaged before the
Sigmoid activation. In this way we empirically search the optimal
way of integrating the recurrent network information into a robust
prediction model.

4. EXPERIMENTAL SETUP

4.1. Dataset & Training

The dataset used to train and test our models is the IRMAS dataset
[12], which has been extensively researched for the task of Instru-
ment Classification. IRMAS is divided into a training set containing
6705 audio segments of 3 seconds each and a testing set containing
polyphonic tracks of various lengths. Each of the 3-sec snippets is
annotated with exactly one of 11 available predominant instruments.
We choose to cut each track into 1-sec segments, since this temporal
resolution increases the data volume and assists the generalizabil-
ity of the training process, yielding optimal results in a number of

Models F1-micro % F1-macro % LRAP % #Params
CRNN2 59.80 ± 0.66 53.20 ± 0.52 74.16 ± 0.66 1.03M
CRNN3 60.77 ± 0.26 54.31 ± 0.35 74.74 ± 0.39 1.07M
CRNN4 60.07 ± 0.67 53.73 ± 0.59 74.11 ± 0.50 1.08M
CRNN5 59.21 ± 0.56 52.18 ± 0.46 74.32 ± 0.65 1.03M

Table 4. Results for the combined CNN and RNN networks dis-
cussed in Sec. 3.3. The subscript denotes the layer in which the
latter was connected to the former.

studies [15, 16]. Each waveform is then downsampled to 22.05 kHz,
downmixed to mono and normalized by its root-mean-square energy.
Since we are interested in classifying only raw waveforms, no fur-
ther pre-processing is applied.

The data is then shuffled and partitioned into 5 subsets. We
perform 5-fold cross validation to each one of the above mentioned
model architectures in order to acquire more representative estima-
tions. All networks were trained using binary cross-entropy as the
loss function. The Adam optimizer [22] is used to optimize the loss
function, with an initial learning rate of 0.001 and 10% decay rate
per 4 epochs of non-decreasing validation loss. The batch size is set
to 64 after fine-tuning. We also perform an Early Stopping criterion
by monitoring the validation loss with a patience of 7 epochs.

4.2. Evaluation Metrics

Each model is evaluated at the IRMAS test set, consisting of 2355
polyphonic music tracks, ranging from 5 to 20 sec duration. During
the evaluation process, we partition each track into 1-sec segments,
compute the per frame predictions and then average them in order
to extract a single track prediction. This method will produce reli-
able results because each labeled instrument is always active for the
whole duration of the track. For the particular polyphonic classifica-
tion we utilize two metrics. The first one is the F1 Score, which is
widely used in many studies [12, 16] on the task and gives a balanced
view of multi-class performance. In order to calculate an overall
score, we compute the average of the per-instrument scores at both
micro and macro scales. The second one is Label Ranking Average
Precision (LRAP), a rank-based metric proposed in [23]. LRAP is
suitable for multi-label classification evaluation as it is threshold-
independent and measures the classifier’s ability to assign higher
scores to the correct labels associated to each sample.

5. RESULTS AND DISCUSSION

5.1. Architecture Comparison

In Table 2 we present the accuracy scores for the recurrent neural
models proposed in Sec. 3.1. It is clear that a simple recurrent net-
work cannot sufficiently decode the information included in a wave-
form. Still, the best model emerges from a combination of two Bi-
GRU layers with 128 and 64 units, respectively, which by far out-
perform the 1 GRU layer. Further experiments show that adding a
CNN Cell before the recurrent units significantly improves the clas-
sification results, indicating the efficiency of the models described in
Sec. 3.3.

On the other hand, as we see in Table 3, 1D convolutional mod-
els are capable of extracting the most discriminative features from
raw waveforms, almost as well as 2D convolutional models that
work on spectrogram inputs [16, 4]. Furthermore, removing the
dense layers not only reduces the number of model trainable pa-
rameters, and thus the training time, but also increases the accuracy



Fig. 4. Instrument-wise performance of the proposed model and the monophonic [4] in terms of F1-score.

Models F1-micro F1-macro LRAP #Params
Bosch et al. [12] 0.503 0.432 – –
Pons et al. [17] 0.589 0.516 – –
Han et al. [16] 0.602 0.503 – –

Kratimenos et al. [4] 0.616 0.506 0.767 24.3M
Proposed 0.608 0.543 0.747 1.07M

Table 5. Comparison of our work with previous performances on
the IRMAS Dataset

markedly. We argue that, in the absence of a dense layer, the net-
work generalizes better upon the information from the convolutional
processing. Additionally, connecting the output of the first CNN cell
with the third one, and the output of the second CNN cell with the
fourth slightly increases the results with no additional cost in param-
eters or training time. Other types of residual connections through
do not yield improved performance.

To optimally combine the temporal information deduced from
the RNN and the already utilized spatial characteristics drawn from
the residual network, we additionally assess the performance of the
combined networks described in Sec. 3.3. Simply averaging the
RNN and CNN model outputs lowers though the classification ac-
curacy, something we attribute to the inadequate standalone perfor-
mance of the BiGRU (see Table 2). We thus experimented insert-
ing the RNN model in various stages of the RFCN architecture that
yielded optimal accuracy. From the scores we report at Table 4 we
notice that there is no observed improvement in the model perfor-
mance as far as the LRAP metric is concerned. However, there is a
steady increase at F1 scores, about 2% and 4% at micro and macro
scales, respectively. It should be mentioned, at this point, that the
combined models consist of a significantly larger number of param-
eters than the fully convolutional ones, while the DCNN is the model
with the most parameters, despite its lower performance.

The optimal architecture is utilized by embedding the BiGRU
module after the 3rd CNN cell of the residual fully convolutional
model and by averaging the 2 models’ output at the end. The pro-
posed model yields an LRAP score close to 75% and F1 scores com-
parable to the literature [16, 4, 17] on the IRMAS Dataset. Specifi-
cally, F1 micro surpasses most studies on the task, while we observe
dominant performance at the more competitive F1 macro score, in
which case the model even surpasses the performance achieved in
our previous work with the use of significant data augmentation [4].
Those results are obtained with a significantly reduced number of
trainable parameters, low training and testing time and minimal pre-
processing. In order to emphasize this, we attempt to train the model
utilized in [4] introducing a sharp reduction to its parameters but
preserving the architecture. We proceed with reducing the convo-
lutional filters and the final dense layer before classification. The
results (Table 6) show that this model falls behind the proposed by
6% and an average 8%, regarding LRAP and F1 scores, respectively.

Models F1-micro F1-macro LRAP #Params
Proposed 0.608 0.543 0.747 1.07M

[4] Reduced 0.520 0.458 0.689 1.20M

Table 6. Comparison between the proposed architecture and the
state-of-the-art after parameter reduction.

5.2. Instrument-wise Analysis

In order to get a more thorough insight into the raw waveform char-
acteristics of different instruments and how much these can assist
the task of Instrument Classification, we examine the class-wise per-
formance in terms of the F1 metric. The results are visualized in
Fig. 4, along with the corresponding results obtained from Constant
Q Transform (CQT) spectrogram modeling in our previous work
[4]. We clearly observe that brass instruments are recognized much
easier using raw waveforms, compared to CQT features. In spe-
cific, clarinet, flute, saxophone and trumpet achieve 14%, 7%, 13%
and 9% increase respectively in F1-score when waveforms are con-
sidered. On the other hand, predominant instruments, i.e. elec-
tric/acoustic guitar, piano/organ and the human voice, are distin-
guished more efficiently through processing their CQT representa-
tion, with the highest difference observed on piano with 10% change
in F1-score. Nevertheless, the comparative performance of the in-
struments pretty much resembles the findings of the same study.

6. CONCLUSIONS

In this paper, we attempt to perform polyphonic instrument classi-
fication from monophonic music data with the usage of their raw
audio waveforms. We experiment with various architectures that are
favourable towards waveforms, like Fully Convolutional Networks
and Residual Nets and we also attempt to embed a Recurrent Net-
work to the optimal Convolutional Architecture so as to fuse their re-
spective temporal and spatial information. A residual FCN-BiGRU
model with a total of 1 million parameters outperforms the state-of-
the-art model, utilizing CQT spectrograms and holding 24 million
parameters, in the F1-macro metric by 4%, while it is comparable in
the F1-micro and LRAP metrics. A more thorough experiment on
the performance of each instrument independently shows that brass
instruments are being identified easier through waveforms, while
more predominant instruments, like piano or the electric guitar, ben-
efit more from time-frequency input features. Future work should
therefore deal with alternate methods to exploit a recurrent neural
network when fed with raw waveforms, as well as with suggestions
to enhance the recognition performance of predominant instruments.
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